Food from (Waste) Seeds

Food from (Waste) Seeds

by Markus Haastert, Anne-Kathrin Kuhlemann


The trend of over processing food has just recently been brought to light by researchers. The total annual amount of food-based, organic waste produced in the world is currently at 1.3 billion tones and as bad as it may sound, when combined with the fact that it accounts for one third of all the food produced in the world yearly, we really have to question ourselves: “Where does all that waste go?”

Now, the answer is quite simple. There are two most common ways of disposing of food-based organic waste and those are: composting and dumping. The first of the two is much more efficient and include reuse of the waste in manufacture of natural fertilizer. The later, however, has a much more negative environmental impact and the fact that it has become increasingly popular over the years is not helping the cause at all. As it happens, the waste is usually stored in massive landfills, where it is left to decay and decompose over the time. The liquid created by this process is very toxic, not as much chemically as being a spawning ground for various microorganisms. In the worst case scenario, this liquid can seep through the porous earth beneath it and get into underground water system, causing serious health risks. The other ecological danger this type of waste disposal brings is the increased emission of methane gas, which according to research is as much as 23 times as potent in creating the greenhouse effect as CO2.

c102_seeds_01 Food from (Waste) Seeds Examples

The root of these problems is the over excessive processing of food. From the point when food is picked or harvested from a field to the point when it reaches our tables, most of it has gone to waste. This is most common in fruit and vegetable production. It is not uncommon for peel and seeds to be discarded as inedible, unusable or plain bad tasting. What is often overlooked is the fact that precisely these parts hold the most nutrients needed for healthy living. The skin of the fruit can have as much nutrients as the flesh, if not more, and throwing it away is often equivalent to throwing away another piece of fruit. On the other hand, some of the seeds are regarded as toxic for humans, which can hold true in some cases. The seeds of some fruits are meant to go through digestive tract of animals, humans included, without being dissolved. On the other hand, seeds from blueberries for example hold a great amount of Omega-3 and Omega-6 acids as well as carotenoids, ellagitannins and ellagic acid and the seeds of watermelons and honeydews are used as a healthy snack in some cuisines, watermelon being rich in protein, zinc and iron, and honeydew seeds offering vitamins A, B6, B12, D, E and K, coupled with an assortment of other nutrients and antioxidants.

c102_seeds_02 Food from (Waste) Seeds Examples

The good news is that many companies have decided to tackle the growing problem of food waste. A startup company named Eatlimmo, originating from Mexico had an idea on how to reduce the growing obesity problem that was plaguing their country. They came up with a way to create a substance, using only fruit seeds and peels, which can substitute eggs and fats in many dishes. Since modern Mexican cuisine relies heavily on fats and flour this product has already found acceptance from bakers manufacturing pastries, bread and tortillas, as replacement for more expansive and less nutritious ingredients. The best part is that the taste of the food stays the same, while its nutritional value increases and cost reduces by up to 12%. Another company, named Southbrook vineyards from Ontario, Canada, has developed an antioxidant, from grape peels. According to them Bioflavia, as their product is called, can provide the human body with enough daily Oxygen Radical Absorption Capacity Units or ORAC for short to reduce the risks of degenerative diseases, heart problems and cancer.

c102_seeds_03 Food from (Waste) Seeds Examples

There are already researches indicating the possible use of fruit waste as medicine for reducing the effects of diseases caused by high cholesterol and reducing obesity. A research has discovered that fruit like raspberries, mulberries and peanuts contain a substance called resveratrol, known for its use in treating cancer patients. Resveratrol helps inhibit the action of nuclear factor –kappa B, causing the cancer cells to starve and effectively “self-destruct”. The highest amount of resveratrol however, can be found in grape skins, making one glass of wine, three to four times per week, an effective way to battle cancer, according to the research of Fan Yeung, a research associate at University of Virginia Health System. Throughout history, many of the incurable diseases were later connected to the deficiencies in diet and the fact that no substance foreign to our bodies can help it as much as those we take in with the food we eat, is becoming clearer by the day. In 18th century, a disease called scurvy was decimating naval expeditions, seeming impossible to cure, until it was discovered that it was caused by vitamin C deficiency and could be treated by adding citrus fruit to the diet, couple that with the fact that orange peel and pith have as much or even more vitamin C and the damage we are causing to ourselves becomes very clear.

c102_seeds_04 Food from (Waste) Seeds Examples

All things considered it is easy to see that improvements in the field of waste processing will help solve many major problems weighing down on today’s world. From saving the energy and resources, over reducing the pollution levels, to providing healthier dietary options for developed countries, but also cheaper resources to those countries in desperate need of basic sustenance, everybody will benefit if this matter is better looked into.


This text was scanned to ensure it contains no plagiarism using plagscan.com.

CCcopy Food from (Waste) Seeds Examples  This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


Food Waste Facts: United Nations Environment Programme. (2013).

Retrieved March 19, 2015, from United Nations Environment Programme Web site:


Bosler, C. (2015). How This Mexican Startup Makes Processed Food Healthy: Unreasonable.is.

Retrieved March 19, 2015, from Unreasonable.is Web page:


Recycling Organic Waste: Practical Action. (n.d.).

Retrieved March 19, 2013, from Practical Action Web site:


SeattleOrganicRestaurants. (2015). Fruit Skin and Seeds: What’s Good and What’s Not: SeattleOrganicRestaurants.

Retrieved March 19, 2015, from SeattleOrganicRestaurants Web site:


Southbrook Vineyards. (2011). The Science: Southbrook Vineyards.

Retrieved March 19, 2015, from Southbrook Vineyards Web page:


University Of Virginia Health System. (2004, May 28). Researchers Discover That A Protein In Grape Skins Can Kill Cancer Cells: ScienceDaily.

Retrieved March 20, 2015, from ScienceDaily Web site:









Straw – the next eco-innovative pacesetter

Straw – the next eco-innovative pacesetter

by Markus Haastert, Anne-Kathrin Kuhlemann

Background: Biomass and natural ecosystems

c101_straw_01 Straw – the next eco-innovative pacesetter Examples

The effort towards lessening the impact of negative human activities on the environment is yet to grow. The European Union stated that eco-innovation is not always about new materials, it can also be about finding new approaches to old materials. Imagine that straw, one of the most underutilized agricultural residues is assuming a leading role in the eco-invention of energy mix and building construction? This may be evidence that global greenhouse gas emission would be lessened to 80 percent by 2050 to thwart the risks associated with environmental degradation. The trending innovative and sustainable use of straw may just be the much-awaited environmentally solution.
The ecosystem produces plenty of natural biomass waste, such as forest, wood and agricultural products. Composting of natural biomass waste converts such wastes into valuable soil amendments, enhancing soil quality through a controlled process by stabilizing organic material.  Composting is highly beneficial in the farming industry, as it improves crop growth, destroying weed seeds, as well as plant and human pathogens. Agricultural straw residue is normally used for composting. Straw is a complex carbon made of cellulose, hemi-cellulose, and lignin; which are components that are resistant to decomposition. Such components are common in plants, providing them with stability and strength. When erosion or grading control permits are required as per local regulations, farmers tend to create 1 or 2 percentage of straw bay hales, as it helps reduce erosion (Brewer et al, 2013).
Currently, a vast amount of unused agricultural straw residues exists around the world. China, India, and the United States are ranked as the major producers of wheat and rice straw residues (Mantanis et al, 2000). China produces more than approximately 620 billion tons of straw a year, ranking as one of the most abundant straw producers in the world. China’s usage of straw for energetic purposes improves environmental protection and sustainable development in a continuous growing-economical nation (Zeng & Ma, 2005).
The production of straw is considered a risk to some farmers, as haulms may break during storms or strong winds. Shorter stem crops have been bred in order to assist with mechanized harvesting, significantly reducing wind damage. Long stem straws injured by hail usually break due to strong winds, or are simultaneously damaged by diseases (Paulsen, 1997). Therefore, farmers prefer crops with shorter stems, such as cereal crops, which are bred to grow shorter. Consequently, biomass production composed of long-stem straws is significantly reducing, affecting negatively the environmental benefits of its usage.
We all know straw, the agricultural by-product; the dry stalks of cereals we leave in the farm after the grain and chaff have been removed. This dry stalk makes up about half of the yield of cereals crops such as oats, rice, rye, barley, etc. These dry stalks are gathered and stored in a straw bale. It’s surprising to know that inasmuch as this residue is considered of less value, its uses are amazing, much more its unimaginable emerging innovative uses in the future energy mix and construction of houses.

Innovation: from food to carbon-negative buildings

You would marvel at the historic and immediate use of straw across the globe. We are used to using straw as animal feed— roughage component of diet to feed cattle or horses. It is used in basketry for making bee skeps and linen baskets and bedding for livestock or humans. Surprised? Straw-filled mattresses referred to as palliasse is still in use in many part of the word – not least due to the positive health effects the silica contained in many straws, e.g. from rye and rice, reportedly have. In fact, silica converted to silicon carbide (SiC) has dozens of industrial applications ranging from electronics to jewelry. Straw itself is used in areas such as erosion control in construction sites, hats production, and production of cucumber houses, cultivation of mushrooms, mulching materials, production of ropes and shoes especially in Korea’s Jipsin sandals, production of compostable food packaging materials and in paper-making.
Straw is now used to develop safe, energy-efficient and sustainable construction practices across the globe. The materials are locally available and could easily be used to produce comfortable, safe, affordable, durable, and aesthetic alternative to costly and environmentally-unfriendly alternatives. In People’s Republic of China for instance, straw-bales construction is currently in vogue to build houses and other public buildings using waste rice straw. As at 2005, over 600 houses have been completed and the benefits are amazing especially its eco-friendly benefits. It has significantly reduced coal consumption and CO2 emissions; lowers risks of respiratory disease and offer much resistance to earthquakes, etc.

c101_straw_02 Straw – the next eco-innovative pacesetter Examples

In Lithuania, the Ecococon’s straw panel is another clear example of successful straw potential in building industry. The panels are from straws tightly-packed into wooden frames which are used to build houses built on wooden bases and mounted on a waterproof layer; once built the houses would be plastered as traditional brickwork. The house can be long-lasting and not easily burnt, as report shows that it can be used for decades or centuries. The construction is low-intensity with no need for concrete or high-energy consuming equipments. In fact, at the end of the house’s lifespan, the company said it can be dismantled and the materials reused. This reduces environmental degradation associated with demolition of brick-built houses and thus promotes environmental health.
In the English city of Bradford, a whole business park is built with straw. The Inspire Bradford Business Park comprise two buildings which provide 2,800 square meters of shared facilities, workshops, offices including rooms and café. This park is believed to be Europe’s largest straw constructions. It’s built in accordance with sustainable principles having met the rating for energy efficiency of the Building Research Establishment Environmental Assessment Method.
The potentials of straw seem so remarkable that the European Union supports EUROCELL project with €1,611,096 through its Competitiveness and Innovation Programme. This project is geared towards researching the certification of straw panel building as a basis for market development and acceptance of the approach. It’s important to note that Modcell is a partner in this project. Modcell is one of the first products to make extensive carbon-negative building a commercial real existence. It employs the remarkable thermal insulation qualities of straw bale and hemp construction to form prefabricated panes. This aids construction of super-insulated, high-performance, low energy buildings with renewable, carbon sequestering, locally-sourced and sustainable building materials.

Potential: A source of energy
Most eco-aggressive development agencies across the world are currently employing straw as option in their possible future energy mix. In Germany, the findings of TLL (Thueringian regional institute for agriculture), the DBFZ (German biomass research centre) and the Helmholtz Centre for Environmental Research (UFZ) showed a promising result.
The findings of this experiment which employed a total of 30 million tons of cereals straw produced annually revealed that 8 and 13 million tons of straw could be used sustainably for energy or fuel production. This undoubtedly highlights the potential contribution of straw to renewable sources of energy. The finding further showed that this potential could give 1.7 to 2.8 million average households with electricity while providing 2.8 to 4.5 million households with heating.
This is a potential energy alternative and environmental remedy to unsustainable energy production. With the rising demand for electricity which is expected to rise to 2.7 times higher by 2025, straw may be the pacesetter in scaling up power supply that will meet world demand of electricity without compromising ecological health. This means that there is hope for production of over 90% of cleaner energy that must replace coal and natural gas plant. Does this seem a daunting task?
Straw has such numerous benefits, it seems we urgently need to reverse the current trend towards shorter haulms. The many researchers dedicated to developing different types of varieties resistant to winter hardiness, strong winds, hail and storms (Limagrain Cereal Seeds, 2010) are hopefully also focusing on strengthening haulms instead. For the production of wheat straws, new varieties of wheat are constantly created, undergoing testing by the National Variety Trials Project (NVT), and the Department of Agriculture and Food (DAFWA) in the United States (Shackley et al, 2014). The creation of long stem crops with stronger haulms and highly resistant to hardiness are necessary. When combined with traditional farming techniques such as hedge growing would allow for the continued production of plentiful straw.

c101_straw_03 Straw – the next eco-innovative pacesetter Examples

The innovative and environmental-friendly use of straw in boosting global energy mix and in cushioning the effect of harmful practices and environmental degradation associated with building construction is the new phase of eco-invention. The use of straw in all its forms is reliable, sustainable, portable, affordable, comfortable, abundant and flexible; thus, it offers a great alternative for the world’s clean energy demand.  Straw, it seems, is the leader in our future eco-inventions.


This text was scanned to ensure it contains no plagiarism using plagscan.com.

CCcopy Straw – the next eco-innovative pacesetter Examples  This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.



Brewer, L., Andrews, N., Sullivan, D., & Gehr, W. (June 2013). Agricultural composting and

water quality (EM 9053). Oregon State University Extension Service. Retrieved from


Paulsen, G. (May1997). Growth and development. Wheat production handbook. Kansas State

University Agricultural Experimental Station and Cooperative Extension Service. Retrieved from


Mantanis, G., Nakos, P., Berns, J., & Rigal, L. (2000). Turning agricultural straw residues into

value-added composite products: a new environmentally friendly technology. Retrieved

from: http://users.teilar.gr/~mantanis/research.files/G1.pdf

Shackley, B., Zaicou-Kunesch,C., Dhammu, H., Shankar, M., Amjad, M., Young, K. (2014). Wheat variety guide for WA. Grains Research & Development Corporation. Retrieved from:


Limagrain Cereal Seeds (2010). What we do. Breeders & development of varieties of wheat. Retrieved from:

Zeng, X. & Ma, Y. (2005). Utilization of straw in biomass energy in China. Thermal Energy

Research Institute, Tianjin University, Tianjin 300072, People’s Republic of China

doi: 10.1016/j.rser.2005.10.003

Hedgegrows, ditches and open drains are designated as landscape features for the purpose of the

single payment scheme. Department of Agriculture, Food and the Marine (Ireland). Retrieved from:


Economics and funding SIG (June 2007). Valuing the benefits of biodiversity. Retrieved from:

Healthy Garden Workshop Series, maximizing your harvest. United States Department of Agriculture. Retrieved from:







Photos (Sources):





New Toilets

Die Toilette neu erfinden

von Markus Haastert, Anne-Kathrin Kuhlemann

Hintergrund: Krankheiten und verschwendete Ressourcen

Eine der Hauptursachen für die immer noch viel zu Hohe Kindersterblichkeit in den Entwicklungsländern ist Durchfall. Durchfallerkrankungen kosten jedes Jahr schätzungsweise 760.000 Kindern unter fünf Jahren das Leben. Diese Erkrankungen sind gewöhnlich ein Symptom einer Infektion des Verdauungstraktes. Sie führen zu Mangelerscheinungen und behindern die gesunde Entwicklung von Kindern, da Nährstoffe ungenutzt den Körper verlassen. Jedes Kind unter drei Jahren leidet in den Entwicklungsländern durchschnittlich drei Mal jährlich an Durchfallerkrankungen. In 86% der Fälle ist verschmutztes Wasser der Grund für diese Krankheiten.

In vielen Regionen der Welt gibt es keine zentrale Trinkwasserversorgung und auch kein Abwassersystem. Fäkalien werden oft einfach in nahegelegene Gewässer geleitet, aus denen dann wiederum Wasser zum Trinken, Kochen und Waschen geholt wird. Krankheiten wie Typhus oder Cholera werden durch Bakterien übertragen, die durch Nahrung und Wasser aufgenommen werden. Diese sind der Grund für hunderttausende Todesfälle jedes Jahr, und das, obwohl sie zu 100% vermeidbar sind, wenn angemessene hygienische Standards eingehalten werden. Insgesamt haben allerdings immer noch ungefähr 2,6 Milliarden Menschen keinen Zugang zu sicheren und hygienischen Sanitäranlagen.

Dies ist absurd, denn eigentlich stellen Kot und Urin eine wertvolle Ressource da, solange sie getrennt voneinander behandelt werden. Mit Wasser vermengter Urin ist ein effektiver Pflanzendünger, der zahlreiche Nährstoffe wie Stickstoff und Phosphor enthält. Gerade Phosphor ist ein unverzichtbarer Nährstoff in der Landwirtschaft, der immer knapper wird, so dass schon diskutiert wird, Phosphor künftig in der Tiefsee abzubauen. Getrockneter Kot kann in humusartige Erde umgewandelt werden.

Während in Europa zentrale Kläranlagen das Abwasser reinigen, gibt es in den meisten Teilen der globalen Südens nicht einmal Abwasserkanäle. Politisch geht der Trend jedoch in Richtung Imitation der westlichen Standards. Zentrale Kläranlagen zu bauen, ohne über Abwasserkanäle zu verfügen, ist allerdings nicht zielführend, da diese Maßnahmen außerhalb von Städten kaum greifen. Dezentrale Lösungen der Problematik wären daher zu bevorzugen. Diese würden es auch erlauben, den Wert der Ausscheidungen für die Landwirtschaft zu nutzen.

c19_toilets01 New Toilets Examples

Die Innovation: dezentrale Wertschöpfung

In der westlichen Welt werden Toiletten mit Trinkwasser gespült – eine unglaubliche Verschwendung einer der wertvollsten Ressourcen die wir haben. Diese Methode auch in Gegenden einzuführen, in denen ein großer Teil der Bevölkerung keinen sicheren Zugang zu Trinkwasser hat kann keine nachhaltige Lösung sein.

Es gibt mittlerweile unzählige Ideen und Innovationen, die zu einem Umdenken geführt haben. Immer öfter werden dezentrale Lösungen wie Komposttoiletten gewählt, um auch in Gegenden ohne zentralen Abwasseranschluss eine gesundheitlich unbedenkliche Möglichkeit zu haben, Exkremente zu behandeln.

Aber auch Hightech Lösungen wurden entwickelt. Im Jahr 2011 begann die Reinvent the Toilet Challenge (RTTC) der Bill and Melinda Gates Foundation. Das Ziel war es eine Toilette zu entwickeln, die unabhängig von Strom- und Wasseranschluss arbeitet, gleichzeitig Keime abtötet und Ressourcen generiert und dabei für jeden bezahlbar ist. Seit dem Beginn des Projekts gab es mehrere Konferenzen, unter anderem in Indien und China, auf denen neue Innovationen vorgestellt wurden. Den ersten Preis des Wettbewerbs gewann das California Institute of Technology mit einer hochkomplexen, zweistöckigen Erfindung, die mit selbst produzierter Solarenergie einen biochemischen Reaktor antreibt, das Wasser reinigt und wertvolle Nebenprodukte wie Dünger und Wasserstoff generiert. Ein anderes prämiertes Projekt der TU Delft schlägt vor, zentrale Häuser mit Sanitäranlagen in ärmlichen Siedlungen zu bauen, die die Einwohner gegen ein kleines Entgelt von fünf Cent am Tag benutzen können. Diese Häuser sollen als Franchise-System die lokale Wirtschaft ankurbeln und Mindeststandards an Hygiene und auch Sicherheit erfüllen. Die Abfallprodukte werden von einem Lastwagen abgeholt und zu einer zentralen Kläranlage außerhalb der Siedlung gebracht.
c19_toilets02 New Toilets Examples
Neben diesen hochtechnisierten Lösungen, deren Potential hauptsächlich darin liegt, die Sanitärsituation in Ballungsgebieten zu verbessern, gibt es auch unzählige Konzepte, die ohne großen technischen Aufwand praktisch selbst zu bauen und zu warten sind. Großes Potential haben Systeme, die kein Wasser benötige um zu funktionieren. Trockentrenntoiletten sind besonders geeignet für Gegenden ohne zentralen Sanitäranschluss. Diese Toiletten kommen ohne Wasser, Strom und Chemikalien aus und basieren auf dem Prinzip der Kompostierung. Bei einer simplen Komposttoilette werden Urin und Fäkalien getrennt gesammelt, zu letzteren Bindemittel wie Holzspäne nach der Benutzung hinzugefügt um Gerüche zu vermeiden. Nach dem Trocknen der Exkremente an der Luft erhält man wertvollen Pflanzendünger. Es ist wichtig zu verstehen, dass es nicht einfach um Plumpsklos geht. Eine gesteuerte Luftzufuhr bei der Zersetzung der Exkremente ist von großer Wichtigkeit, da es ansonsten zu anaeroben Prozessen kommt, die schlechte Gerüche und Gesundheitsgefährdungen durch Gasproduktion verursachen. Daher haben industriell gefertigte Trockentoiletten eine installierte Ventilation, die einerseits den Kompostierungsprozess steuert und andererseits schlechte Gerüche vermeidet.

Der Urin eines gesunden Menschen ist normalerweise frei von Krankheitserregern. Wenn Urin allerdings mit Kot vermischt wird, entsteht eine gefährliche Brühe. Das Trennen der Ausscheidungen ist daher sinnvoll, um das Ausbrechen von Krankheiten zu vermeiden. Durch die Trennung der Exkremente erhält man zwei wertvolle, nicht verunreinigte Ressourcen. Von Hightech bis Marke Eigenbau, gibt es gibt schon zahlreiche Modelle sogenannter Trenntoiletten auf dem Markt. Im Hamburger Hauptbahnhof wurde ein Projekt initiiert, bei dem eine öffentliche Trockentoilette installiert worden ist. Durch Mikrofilter werden Fest- und Flüssigstoffe getrennt, um aus ihnen neuen Wert für die Landwirtschaft zu schaffen. Die Feststoffe werden mit Kohle vermischt und unter Zugabe von Mikroorganismen fermentiert. Es dauert circa sechs Monate die Feststoffe unter kontrollierter Luftzufuhr zu wertvoller Erde zu kompostieren. Am Ende dieses Prozessen entsteht äußerst fruchtbarer Humus, sogenannte Terra Preta. Diese verwendet wiederum der Botanische Garten in Berlin zur Pflanzenzucht. Auch das mit Wasser verdünnte Urin wird als Dünger verwendet.

c19_toilets031 New Toilets Examples

Mittlerweile gibt es auch ökologische mobile Toiletten, die im Gegensatz zu herkömmlichen Dixiklos komplett auf schädliche Chemie verzichten. Anstatt derer werden Holzspäne hinzugefügt, die die Exkremente abdecken und Geruchsbildung komplett vermeiden. Ökonomisch machen solche Installationen Sinn, da die hohen Kosten für die Entsorgung von Sondermüll entfallen. Stattdessen werden die Exkremente kompostiert, sodass neuer Wert geschöpft wird.

Aber auch gerade für Entwicklungsländer sind dezentrale Lösungen zu bevorzugen, die möglichst simpel gehalten werden, sodass eine ständige technische Überprüfung unnötig ist. Denn eine solche sicherzustellen ist nicht unbedingt einfach in Regionen mit wenig Planungssicherheit. Trenntoiletten sind hier eine sehr geeignete Möglichkeit, von denen bei richtiger Installation keine Gefahr für die Gesundheit ausgeht. Hier werden Feststoffe direkt vom Urin getrennt.

China ist ein Vorreiter auf dem Gebiet der nachhaltigen Toiletten. Im von Dürre geplagt Norden des Landes wurde eine Modellstadt gebaut, in der alle Exkremente der Einwohner zusammen mit Küchenabfällen gesammelt und kompostiert worden sind. Obwohl der Versuch eingestellt wurde, zeigt dieses Beispiel zusammen mit zahlreichen anderen, dass es möglich ist ganze Städte mit solchen ökologischen Sanitäranlagen zu versehen.

c19_toilets04 New Toilets Examples

Das Potential: Trinkwasser sparen und Krankheiten vermeiden

Trinkwasser zur Spülung von Toiletten zu verwenden ist eine unglaublich Verschwendung. Jeder Einwohner Deutschlands verbraucht jeden Tag durchschnittlich 35 Liter an Trinkwasser nur für das Spülen der Toilette. Das sind über 12.000 Liter im Jahr. Zum Vergleich: die Verfassung Südafrikas spricht jedem Menschen das Recht auf gerade einmal 25 Liter Wasser am Tag zu. Dieser Vergleich macht klar, was für eine Verschwendung einer wertvollen Ressource die Verwendung von Trinkwasser ist. Wir spülen wortwörtlich eine überlebenswichtige Ressource das Klo runter, zu der fast 900 Millionen Menschen weltweit überhaupt keinen Zugang haben.

Eine Alternative dazu ist, schon für andere Zwecke verwendetes, sogenanntes Grauwasser zum Spülen zu benutzen, falls man nicht komplett auf wasserbasierte Toiletten verzichten möchte. Dieses Wasser, was zuvor zum Geschirrspülen, Wäschewaschen oder Kochen benutzt wurde und daher leicht verunreinigt ist, kann Trinkwasser ersetzen und so eine wertvolle Ressource schützen. Auch aufgefangenes Regenwasser kann zum Spülen der Toilette verwendet werden. Dadurch können auch Kosten im Haushalt gespart werden, da weniger Abwasserkosten anfallen. Beides muss jedoch bereits beim Hausbau berücksichtigt und integriert werden.

In Deutschland ist die rechtliche Lage in Bezug auf alternative Sanitärsystem wie Trockentoiletten sehr komplex. Eventuell macht man sich sogar strafbar, wenn man neben seinem Gartenhäuschen eine Trockentoilette installiert und daraus Humus herstellt. Hier ist die Politik gefragt, den Weg für diese innovative Technologie freizumachen und so weitere Forschung anzustoßen. Dabei bieten alternative Systeme zahlreiche Vorteile: Zentrale Kläranlagen sind auch mit modernster Technologie nicht in der Lage, bestimmte Verunreinigungen aus dem Wasser zu klären. So sind im Trinkwasser hormonelle Rückstände der Anti-Baby-Pille zu finden. Durch Kompostierungsprozesse ist es möglich, Hormone, Krankheitserreger und Medikamentenrückstände zu zersetzen. Weiterhin könnte bei einer großflächigen Installation eine hoher landwirtschaftlicher Mehrwert geschaffen werden.

Nachhaltige Toiletten bieten die große Chance, Krankheiten zu vermeiden, wichtige Ressourcen zu schonen und gleichzeitig Wertstoffe zu generieren.


This text was scanned to ensure it contains no plagiarism using plagscan.com.

CCcopy New Toilets Examples  This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.








Video: https://www.youtube.com/watch?feature=player_embedded&v=1bRCmGztzUg

Bilder: StockXCHNG


Flame retardant

Lemon Flame Retardant

By Markus Haastert and Anne-Kathrin Kuhlemann

Background: Increasing Demand for a Toxic Product
The world market for fire and flame retardants is currently at USD 6-7 billion dollars per annum, already above the level that studies from the year 2011 estimated the market to reach in 2018. Demand for flame retardants had been heaviest in Asia Pacific region due to significant growth in infrastructure in the past few years. China alone accounts for approximately 24% of the global demand. However, North America and Western Europe continue to be the second and third highest demanding regions. The movement towards environmental protection awareness and increased safety regulations in these two regions has begun a trend away from the harmful halogenated products which previously dominated the market.

Halogenated flame retardants have been linked to cancer, immune and endocrine disruption, adverse reproductive and neurodevelopmental effects, and reproductive abnormalities. Over the years, increasing levels of concentration of several flame retardants have been found in blood and even breast milk; in the case of fire, many retardant actually develop highly toxic dioxins. With these health risks, it is interesting to note that most flame retardants are found in residential buildings. They are used in thermal insulation and energy efficiency materials, in pipe and cable plastic, and in the foam in mattresses and sofas. The transportation industry has also greatly increased demand for high-performance, flame retardant plastics. It is expected that the next big push for flame retardants will occur in the electronics sector, where smartphone and tablet producers are already demanding flame retardant materials with less environmental impact.

Environmental organizations have been campaigning for reduction of brominated flame retardants for several years, and governments have responded by setting new standards for flammability. The market for halogenated flame retardants is losing market shares to healthier, more environmentally friendly products. Phosphorous-based products are on the rise in China but halogenated flame retardants still currently dominate the market. Inorganic, mineral-based Aluminiumtrihydrate (ATH) compounds account for about half of total market volume in North America and Western Europe. As of November 2014, California revised it’s standard on flame retardants, opening the door for innovators to enter the market.

c16_fire_control_01 Flame retardant Examples

Innovation: Sustainable, Non-Toxic Solution Involving Citrus Antioxidants
Swedish inventor, Mats Nilsson has already introduced a solution based on food grade chemicals. His patented “Molecular Heat Eaters” (MHE) are based on the theory that the amount of energy released during an acid-base reaction, determines the amount of energy needed to degrade an earlier reaction.

In the simplest terms, MHE binds oxygen to form water using salts. The ions produced are called cations. The carbon they provide builds char faster and generates CO2 which is non-flammable. Deprived of oxygen, the fire is trapped and doesn’t spread. The MHE can be manufactured from grape pomace and citrus fruits, and produce biodegradable liquids, gels or powders. The small size of these salts increases the surface area, increasing the speed of the reaction and decreasing the total amount of fire retardant required.

Seeing the profit potential in his newly created non-toxic, biodegradable, environmentally friendly product, Mats Nilsson created Trulstech AB, a Swedish company that evolved into Biomimetic Technology Ltd. in Australia. MHE has been touted as a low carbon, non-toxic, eco-friendly, sustainable flame retardant. The base of the retardant being fruits and food grade chemicals means any chemicals would be similar to what consumers would find in their daily foodstuff, which in turn should reduce the health risks associated with other major fire-retardant chemicals. Trulstech states on its website that the majority of MHE’s products can be sourced easily and locally almost anywhere in the world. This makes the option cost effective to manufacturers and a viable option for consideration when trying to be more eco-friendly but maintain a competitive business. This makes the innovation more than just a discovery; it is a viable solution for multiple marketplaces.


c16_fire_control_02 Flame retardant Examples

The Potential: Revolutionize Multiple Industries with a Non-Toxic, Cost Competitive Option
Biomimetic has managed to win a major worldwide innovation award every year between 2003 and 2013, including an Energy globe award for MHE in 2010. Its Swedish partner, Deflamo AB, is listed in Stockholm to manufacture the ingredients strictly for the European market. The companies have jointly been working on how the flame retardant works with cellulose wool and PU foam. Other companies have popped up as well. UK based Yaaparra is selling MHE to manufacturers. Bulgarian company Lubrica offers an MHE based fire-retardant hydraulic fluid.

While currently the flame retardant seems to be utilized in fire-safety and lubrication equipment, there is no shortage of applications for the MHE. Trulstech itself notes that the following industries are prime areas of focus for MHE innovation:

  • Cellulose Wool, PVC film, PU Foam, and EPDM-rubber for construction
  • Kraft paper for furniture
  • Canvas for tent production
  • Viscose for textiles
  • Commercial Cotton for curtains and clothing
  • Polyester fibre for acoustic applications.
  • PVC-emulsion aimed for commercial product applications.

An American Department of Defense paper has recently recognized the need for biomimetic-based flame retardant materials for combat uniforms. The paper specifically notes that public awareness globally on recycling and the impact of chemicals on human health make it necessary for new flame-retardant materials to be derived from natural products such as plants. The focus is on keeping the properties required for military applications but providing a non-toxic flame-retardant solution. The non-military applications for such materials would prove lucrative in the clothing or baby products industries.
c16_fire_control_03-2 Flame retardant Examples
In the UK, scientists at the National Institute of Agricultural Botany in Cambridge have been researching the potential of MHE using rosemary instead of citrus. The scientists have already noted there are far-reaching potential applications including, all types of food packaging, plastic manufacturing, and a change in oil-based manufacturing. There is excitement about the fully sustainable production of degradable and bio-based plastics. Their current belief is that rosemary antioxidants will work as well as, or in some cases better than, the citrus based antioxidants currently being used.

c16_fire_control_04 Flame retardant Examples

MHE is already competitive in price and performance. A few savvy business people have begun moving the product into major manufacturing industries and national defense and science centers around the globe see the need and practicality of using this non-toxic option. With the increased restrictions on flame retardant materials, it seems to be only a matter of time before entrepreneurs bring this innovation to numerous other industries.


This text was scanned to ensure it contains no plagiarism using plagscan.com.

CCcopy Flame retardant Examples  This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.












Pictures: StockXCHNG



Natural antibiotics

by Markus Haastert and Anne-Kathrin Kuhlemann


c13_antibacterial01 Antibiotics Examples

Background: antibiotics and the resistance problem
For the past few decades, the human life expectancy has increased significantly. That is the result of several achievements on the medical and pharmaceutical field, and a great example is the development of antibiotics and antifungals, which control such biological agents that cause diseases.
Besides medical care, such pharmaceuticals have been applied to several business sectors, among which are water treatment, agriculture, food preservation and oil and gas production. In fact, biocide compounds are currently found in everyday products such as mouth wash, deodorants, soaps, detergents, toys and chopsticks.
The antibiotic market has produced USD 42 billion in sales in 2009 globally, which represents 5% of the global pharmaceutical market. However, the market has seen better days. The average growth from 2005 to 2010 was 4%, which is considered a low growth rate. For 2016, demand is expected to be at USD 44.7 billion – not very high for a growth-spoilt industry.
One of the reasons for this economical change is that the frequent use of these substances has been causing a very dangerous problem, which is the antibiotic resistance, meaning that an ever increasing number of bacteria species are becoming resistant to the antibiotics that are available.
This phenomenon occurs because antibiotics kill most of the bacteria where they are applied, but each time, a few that are naturally resistant due to mutation survive. The ones that survived will, then, proliferate, generating a great number of antibiotic resistant bacteria. The speed in which such processes can occur is alarming. An experiment conducted by scientists of St. Jude Children’s Hospital, in Memphis, Tennesse (USA), was able to produce bugs resistant to triclosan, one of the main chemicals used to control bacteria, in only two days.
Besides, the use of antibiotics has side effects, given that it kills not only the harmful, but also the beneficial species of bacteria that live within the human organism, which are necessary for a number of body functions.
Another aspect regarding the presence of bacteria in the environment, is that they quickly proliferate into dense colonies, forming biofilms, slime-enclosed aggregates of cells that aggravate diseases and make bacteria resistant to antibiotics in an order of 10 to 1000 times more effectively. If bacterial biofilm is formed inside the human host, the infection will usually become untreatable, turning into a chronic state.

c13_antibacterial02 Antibiotics Examples
There may be, however, another solution to the bacteria control problem. Peter Steinberg and Staffan Kjelleberg, both professors at the University of New South Wales (UNSW), noted while diving off the coast in Southern Australia that, despite the enormous amount of microorganisms in the ocean, a red seaweed (Delicea pulchra) was not colonized by bacteria.  As the seaweed itself was intact, they intuited that the solution found by those live beings wasn’t simply killing colonizers, since in that case the seaweed would end up killing itself as well. The researchers realized that, in fact, the seaweed was only blocking the communications amongst the bacteria, a process that is scientifically referred to as Quorum Sensing Inhibitor (QSI) chemistry. Quorum Sensing is the term used to refer to the means by which most disease causing bacteria mediate their biofilms. Therefore, unable to communicate with each other, the bacteria can’t coordinate, take over the host, nor produce biofilms.

c13_antibacterial03 Antibiotics Examples

Innovation: bacterial control without antibiotics!
Steinberg and Kjelleberg were able to produce synthetic analogues of the inhibitor used by the seaweed which demonstrated high efficacy against a wide range of bacteria species, as well as inhibiting the growth of fungi. Tests have proven the product to be safe, and risk free of inducing bacterial resistance. This discovery really has the potential to be a game-changer regarding the way antibiotics are used in many fields such as medical treatment and medical devices, agriculture and food processing, industry, water treatment, etc. This could really mean, some years ahead, the end to bacterial resistance.

Along with their university, Steinberg and Kjelleberg created in 1999 a biotechnology company named Biosignal, dedicated to researching the QSI and its many applications. The intention of the company was to produce and commercialize a synthetic analogue to the substance found in the seaweed. However, even with the interest of private investors, the company struggled to do so. In 2010, Biosignal Ltd. was acquired by an entertainment company, and the products were discontinued.

Despite the potential, it seems that so far, companies have failed to take the innovation to the next step and actually develop and commercialize such products for practical applications. Cayman Chemical sells a number of products, mostly synthetic substances, which allegedly are Quorum Sensing Inhibitors. However, these products are for laboratory research only, not being indicated for any kind of human or veterinary diagnostic or treatment.
It seems one of the major efforts so far has been made by Unilever, which tested the seaweed extract to produce hygiene products. The company ran tests and confirmed its effectiveness for controlling body odor. However, it appears that product development has not gone further to date.

c13_antibacterial04 Antibiotics Examples

Potential: a world without bacterial resistances
A great advantage of products that use the QSI principle, besides avoiding bacterial resistance, is that they can be applied to many fields, asides from the medical one.
The synthetic furanones which are responsible for the QSI effect, according to researches of the former Biosignal Ltd. Company, are effective on inanimate surfaces such as pipes, membranes and medical devices, as well as animate surfaces like lungs, skin and teeth. Hence, such products could be applied to diverse ends reducing maintenance costs, such as in pipelines, heating, ventilating, air conditioning systems, cleaning products, and water treatment. Another advantage is that these products are biodegradable, hence not causing pollution or toxicity, quite the opposite of traditional antibiotics.

The therapeutical potential of other QSI substances has been proven in other scientific research. A study observed that a meta-bromo-thiolactone compound was able to inhibit bacteria, preventing biofilm formation and protecting lung epithelial cells, as well as preventing the bacteria virulence factor expression. Also more specialized and complex applications are possible. Another group of scientists produced a patent, in 2012, for the use of QSI, as well as biofilm dispersing agents, for controlling biofilm-associated implantable medical related infections.
Regarding the development of QSI products, it seems a great step is ahead. Scientists have been investigating the presence of substances with this property in plant extracts, and they are believed to be toxicity free, though further long-term studies are still needed. Some examples of plants or parts of plants in which QS antagonists substances were found are garlic bulbs, vanilla beans, oranges, tea tree, rosemary, and pea exudates.
This discovery could make the development and commercialization of QSI products much easier, since it would only require the extraction of the substance from these sources, instead of developing a new synthetic substance entirely. Besides, similar procedures are widely used by pharmaceutical companies, whose products’ active principles are majorly obtained from plant matter.
The technical knowledge to use this revolutionary discovery is being produced every day. The key to a new world of bactericides relies on a company taking it to the next level.


This text was scanned to ensure it contains no plagiarism using plagscan.com.

CCcopy Antibiotics Examples  This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


¹ http://www.nature.com/nrd/journal/v9/n9/full/nrd3267.html

² http://www.transparencymarketresearch.com/antibiotic-market.html





7 http://www.pnas.org/content/110/44/17981.abstract

8 http://www.google.com/patents/US20140005605

9 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3690052/





Images: Istockphoto, StockXCHNG

Schermafbeelding 2014-10-01 om 11.46.10


E-Waste: A New Commodity. Is the future of Mining in landfills rather than in mines?

By Markus Haastert and Anne-Kathrin Kuhlemann


Problem: electronic waste in landfills
A recent report by the StEP Initiative comprehensively presents the findings of an ambitious study containing a large volume of previously unavailable data about the global accumulation of e-waste. The shocking outcome of this report is that by 2017, all of that year’s end-of-life refrigerators, TVs, mobile phones, computers, monitors, e-toys and other products with a battery or electrical cord worldwide are predicted to fill a line of 40-ton trucks end-to-end three quarters around the equator.

The report containing this frightening forecast was commissioned and compiled by the “Solving the E-Waste Problem (StEP) Initiative”, an innovative partnership of UN organizations, industry, governments, and non-government and science organizations. StEP was set up in an attempt to try to quantitatively understand and ultimately find solutions for a problem, which has a negative impact on the lives of more and more people around the globe. To illustrate the extent of the global e-waste problem, it is graphically portrayed in a novel format: the StEP E-Waste World Map.

Unfortunately, most of these no longer useful e-products are destined for disposal. However, gradually improving recycling initiatives in some areas are diverting some of them to recycling and reuse. The interactive map resource, which contains comparable annual data from 184 countries, shows the estimated output of electrical and electronic equipment put on the market and how much of it eventually will result in e-waste.

As the map shows, almost 48.9 million metric tons of used electrical and electronic products were accumulated in 2013, amounting to an average of 7 kg for each of the world’s 7 billion people. And the flood of e-waste is still growing. The StEP prediction is that, by 2017, the total annual volume will be 33 per cent higher at 65.4 million tons, which represents the weight of almost 200 Empire State Buildings or 11 Great Pyramids of Giza. Through this impressive effort of data collection, the magnitude of the problem becomes blatantly obvious.

Looking at the US, the news is similarly frightening: consumers discard more than 110,000 computers per day. E-waste is the fastest growing solid municipal waste type ending up in landfills or incinerators, with a rate of less than 10% of it being recycled. Worldwide computer sales in 2012 reached the 426 million mark. But what is even more alarming is that the production of electronic equipment consumes more energy, metals and chemicals than any other product in a modern household. The majority of the energy of electronic devices is actually consumed in making them (81%), and not in using them (19%).

In terms of metal content, E-waste has a higher concentration of metals on average than any other raw material, from which the metals have been extracted. It is a fact, that 1 metric ton of electronic computer scrap contains more gold than can be extracted from 17 tons of ore. A ton of used cell phones, good for 6,000 handsets, contains 3.5 kg of silver, 340 grams of gold, 140 grams of palladium, and 130 kg of copper. Japanese consumers alone have already discarded over one billion handsets, and with it 3,500 tons of silver.

Rather than committing these valuable resources to the ever-growing volume of landfills, it is more important than ever to work on creative solutions for their isolation and re-entry into the production process. This is exactly what metals without mining is about. The reason for this should not just be that many of the heavy metals featuring prominently in e-waste, such as mercury, lead, cadmium and flame retardants pose a real danger to public health, but also our growing awareness, that mining is extremely harmful to the environment, as stated in the MIT Mission 2016 report.

c09_metals01 e-waste Examples

Innovation: bacterial extraction
One of the technologies used for the extraction of metals from manufactured products no longer in use is referred to as chelation, a chemical process, in which the affinity of certain bacteria for a specific metal is used for the extraction of the metal from an otherwise inaccessible environment.

Microorganisms have been active in the mobilization of metals from rocks, minerals and soil for millions of years. Living cells purify and process metals and make these available to produce enzymes, vitamins and genes. Living cells, then, have the ability to process metals. Better, living cells can recognize and bind specific metals and could therefore be used to extract pure metals out of discarded electronics, if they were previously ground down into small enough particles, without any expensive and technically challenging smelting process.

Prime Separations (USA), founded by Henry Kolesinski and Robert Cooley, former researchers with Polaroid and Waters Associates and experts in film technologies, developed and markets a simple machine that works through the continuous extraction of metals on a thin plastic sheet. They originally designed a small, low cost apparatus, with which they were able to show the viability of the process using crushed Japanese cell phones supplied by Dowa Mining. The energy cost is minimal, the separation technique operates at ambient temperature and pressure, the main energy input is the crushing of e-waste, with the mass manufacture of the film remaining a challenge. The aim, however, is the production of a system, which can process tons of e-waste per hour, instead of kilograms per day.

The first income of Prime Separations is the development of on-site metal recovery systems for administrative bodies keen to learn how to reduce the dramatic stockpile of e-waste and avoid toxic leaks. In order to put the common knowledge, that one ton of computers has a value of $15,000 in terms of the embedded metals, to work to our advantage, the installation of a network of on site processing units to convert this expensive and partly dangerous e-waste into a cash generating opportunity seems to be an exceedingly good idea.

These separation units should eventually be installed on each landfill site, or e-waste deposit. They will generate revenue and reduce the strain on site. Advantages are obvious: the lifetime of the landfill is extended, the risk of soil contamination and leaking toxins into the water table is reduced. Cost of land in and around landfills is negligible and the resources are delivered to the doorstep more or less for free. A solid income from the final processed metal is guaranteed. With the implementation of this innovation the mining of landfills will have become a reality. Not just will the stream of non abating e-waste restock the commodity necessary for the process, our waste, but landfills grown over years, even decades, contain so much value that it should be worth to excavate them.

This relatively inexpensive technology also provides developing countries with the opportunity to eliminate e-waste, stimulating the creation of metal processing facilities like the one proposed by Prime Separations. If we take into account the reduction of demand for steel and titanium due to the introduction of silk geometry, and combine this with a proposed recovery level of 99.98% pure metals, including the toxic ones, we can start to see how this reduces costs and increases revenues, while generating jobs that are healthy and building up social capital.


c09_metals04 e-waste Examples

Potential: from mining to recovery
There are many more innovative approaches in the field of e-waste mining. One of the possibilities is the bioleaching of polymetallic industrial waste using chemolithotrophic bacteria. Another promising contribution in materials research comes from the group of Manchester University lecturer A. Vijayaraghavan, looking into ways to make the required film material more accessible.Some reports also suggests to use stockpiling until the necessary technology has caught up with the demands of the e-waste management problem. Considering recent advances, it should not be too long from now.
c09_metals03 e-waste Examples
Most research for now focuses on strategic metals, but it is obvious that other products containing metals could equally be recycled more efficiently. There is no reason why the metal components used in cars, for example, could not come from recycling, too. The challenge will be to shift the focus of a whole industry from primary extraction to secondary extraction, making a number of very expensive technologies obsolete to be replaced by others.
c09_metals02 e-waste Examples

The fact that much of the metal we already extracted is thrown away, has to be altered to a more responsible attitude toward the usage of our common natural resources. The market for e-scrap recycling is expected to reach a value of almost $15 billion in 2015. With technological advances we have at our disposal and which are constantly becoming more sophisticated, there is no reason not to adopt more stringent recycling rules, aimed at the re-entry of previously used metals into the production process. In addition, political pressure, could contribute a lot to force the industry to mend their ways. If future-oriented regulations are put in place, the industry will have to follow.


This text was scanned to ensure it contains no plagiarism using plagscan.com.

CCcopy e-waste Examples  This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.










Photos: StockXCHNG, iStockphoto, Flickr

Schermafbeelding 2014-09-30 om 15.58.59


Seide – ein Stoff, der Geschichte schrieb

von Markus Haastert, Anne Kathrin Kuhlemann

Hintergrund: Seide als Naturpolymer

Die Geschichte der Seide ist faszinierend. Vor über 5000 Jahren wurde in China die Seidenproduktion erfunden, ursprünglich als Nebenprodukt von Wiederaufforstungsmaßnahmen mit Maulbeerbäumen – die Herstellungsmethode wurde über 3000 Jahre lang wie ein Staatsgeheimnis gehütet. Importierte Seide kostete auf europäischen Märkten mehr als Gold. Es war ein Material für Kaiser und Könige. Es wurde über die Seidenstraße in die westliche Welt exportiert, war lange Zeit das wichtigste Exportgut Chinas und trug zu dessen Aufstieg bei. Die Seidenproduktion schuf Arbeitsplätze auf dem Land, und der Handel trug zu den Anfängen der Globalisierung bei. Erst ab dem 12. Jahrhundert gelang es auch den Persern und Europäern, Seide herzustellen.
Seide ist ein komplett natürliches Produkt aus Proteinen und wird von den Raupen des Seidenspinners, aber auch von Spinnen, Muscheln und anderen Tieren hergestellt. Die Seidenraupe spinnt einen Kokon, in den sie sich für die Metamorphose zurückzieht. Für das Spinnen des Seidenkokons benötigt die Raupe zwei bis drei Tage. Vorher ernährt sie sich ausschließlich von den Blättern des Maulbeerbaumes. Die fertigen Kokons müssen zuerst in heißes Wasser getan werden, welches den Kleber löst, den die Raupen verwenden, um die Fäden zusammenzuhalten. Oft wird hierzu auch Wasserdampf verwendet. Dies tötet die Raupe im inneren des Kokons. Danach wird dieser zu einem langen Faden aufgerollt, der bis zu 3000 Meter lang sein kann. Bis zu acht Kokons werden auf einmal aufgerollt, um die Stabilität des gewonnenen Fadens zu erhöhen. 3.000 Kokons ergeben dabei circa 250g Seidenfaden.

c07_silk01 silk-story Examples

Wildseide wird aus Kokons gewonnen, aus denen die Raupe schon geschlüpft ist. Allerdings birgt dies das Problem, dass man beim Aufwickeln viele kurze Fadenstückchen erhält. Daher müssen die Fäden beim Weben verdickt werden, was eine unregelmäßige Oberfläche des Stoffes erzeugt.
Nachdem Chinas Reichtum und Wachstum Jahrtausende lang durch das Geheimnis der Seidenproduktion beflügelt worden war, gilt das Produkt heute immer noch als Luxusgut für die westliche Welt.1

Trotz ihrer wunderbaren Eigenschaften (isolierend, antibakteriell, knittert kaum, brillanter Glanz) macht Seide als natürliche Textilie jedoch nur 0,2% der weltweiten Textilmarktes au.2 Sie überlebt nur noch als Luxusartikel und teilweise in teurer Sportkleidung wegen der Konkurrenz von viel günstigeren und strapazierfähigen Alternativen wie Polyester. Es ist also illusorisch zu glauben, dass Seide das Potenzial hat, heute gängige Textilien zu ersetzen. Allerdings gibt es andere Anwendungsbereiche, in denen Seide tatsächlich großes Potential birgt.

c07_silk02 silk-story Examples

Im Jahr 2009 betrug die globale Plastikproduktion trotz Wirtschaftskrise rund 230 Millionen Tonnen.3 Die Kunststoffproduktion ist ein riesiger Geschäftszweig, und damit auch einer der größten Umweltverschmutzer. Dazu kommen zahlreiche Gesundheitsrisiken beim Umgang mit künstlichen Polymeren: Sie sind kaum kratzfest und temperaturbeständig, sodass sich unter bestimmten Bedingungen zahlreiche Additive lösen und in die Umwelt oder den menschlichen Körper gelangen. Die herkömmlich Produktion von Plastik verbraucht horrende Mengen an nicht nachwachsenden Rohstoffen viel Erdöl und Erdgas. Aus diesen Gründen wird seit einiger Zeit immer öfter auf Bioplastik gesetzt.4 Doch auch diese sind nicht unbedingt unproblematisch.

Kunststoffe aus Maisstärke stehen in Konkurrenz zum Lebensmittelanbau. Baumwolle hat einen extrem hohen Wasserverbrauch und kann ihr Anbau kann verheerende Umweltschäden hervorrufen (sehr gut zu sehen am Fall des Aralsees). Daher müssen Alternativen gefunden werden.

Innovation: Auf dem Weg zu neuen Märkten

Proteine sind Polyamide – und Seidenpolyamid hat das Potenzial, einige der oben genannten Probleme zu lösen. Seide ist fast um den Faktor 1.000 energieeffizienter in der Herstellung als Kunststoffe.5 Seidenraupen können nicht ohne Maulbeerbäume leben. Das bedeutet, dass für die Seidenproduktion Aufforstungsmaßnahmen vorgenommen werden. Da die Maulbeerbäume als CO2-Senke fungieren, hat die Seidenproduktion sogar Vorteile für das Klima. Weiterhin produzieren die Bäume natürlich sowohl Früchte als auch Biomasse, was ein weiterer, sehr wertvoller Rohstoff ist. In einer idealen Produktionsweise, würde die anfallende Biomasse zur Energie- und Wärmegewinnung verwendet werden. Diese Symbiose von Maulbeerbäumen und Seidenraupen für eine nachhaltige, natürliche Textilproduktion zu nutzen entspricht den Prinzipien der Blue Economy.

Weiterhin ist die Seidenproduktion sehr arbeitsintensiv, was einerseits den Preis erhöht, andererseits das Potential birgt, viele Arbeitsplätze zu schaffen, was gerade dort, wo sie traditionell hergestellt wird, auch notwendig ist (China alleine stellt heute über 80% der weltweit produzierten Rohseide her, Indien folgt mit weiteren 13%t6). Auch Brasilien spielt mittlerweile eine bedeutende Rolle in der Seidenproduktion.

c07_silk03 silk-story Examples
Vor allem in der regenerativen Medizin gibt es zahlreiche vielversprechende Ansätze Seide zu nutzen, denn: Seide hilft dem Körper, sich selbst zu heilen. Es gibt Hinweise, dass praktisch alle Kulturen Spinnennetze zur Behandlung von Wunden verwendet haben.7 Die Spinnenseide unterstützt die Blutgerinnung und besitzt oft antibakterielle Eigenschaften. Außerdem ist Seide biokompatibel, und daher ideal für medizinische Anwendungen geeignet.8 Zum Beispiel für großflächige Hauttransplantationen bei Unfall- oder Verbrennungsopfern ist Seide ideal geeignet. Als Faden für medizinische Nähte wird Seide ohnehin schon sehr lange verwendet.

Potenzial: Heilung für Blinde und Gelähmte

Mediziner forschen unter Hochdruck daran, durchtrennte Nervenfasern durch Seide zu reparieren. Dabei bildet die Seide ein Gerüst, entlang dessen die körpereigenen Fasern entlang wachsen. Bei Schafen ist dies bereits gelungen, und Ärzte hoffen, künftig bis zu 6cm Nervenzellen damit wiederherstellen zu können. Selbst blinde Menschen, deren Sehnerv durchtrennt wurde, könnten damit eines Tage geheilt werden.9 Auch Implantate sollen künftig aus Seide stammen oder auch komplizierte Brüche fixieren – während der Knochen verheilt, löst sich die Seidenschraube im Körper von selbst auf.10

c07_silk041 silk-story Examples

Die besonderen Eigenschaften von Seide haben auch das Interesse anderer Industrien geweckt, die sich den Wunderstoff zu Nutze machen möchten. So gibt es immer wieder Versuche, schusssichere Westen aus Seide herzustellen. Jedoch ist das Material der Seidenraupe nicht ideal für solche Zwecke geeignet. Vielversprechender ist hier Spinnenseide, also das Material, aus dem Spinnennetze bestehen. Dieses ist nämlich nochmal um einiges stabiler und elastischer als die Raupenseide.


This text was scanned to ensure it contains no plagiarism using plagscan.com.

CCcopy silk-story Examples  This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


1 http://www.theguardian.com/artanddesign/2012/jan/24/spider-silk-cape-show

2 http://www.bookpump.com/bwp/pdf-b/1124937b.pdf

3 http://www.plasticseurope.org/documents/document/20101006091310-final_plasticsthefacts_28092010_lr.pdf

4 http://www.umweltlexikon-online.de/RUBwerkstoffmaterialsubstanz/Kunststoffe.php

5 http://www.theguardian.com/science/2013/jan/12/fritz-vollrath-spiders-tim-adams

6 http://www.bookpump.com/bwp/pdf-b/1124937b.pdf

7 http://www.theguardian.com/science/2013/jan/12/fritz-vollrath-spiders-tim-adams

8 http://www.deutschlandfunk.de/medizin-mit-spinnenseide-nervenzellen-heilen.676.de.html?dram:article_id=304215

9 http://www.augsburger-allgemeine.de/wissenschaft/Spinnenseide-Neue-Hoffnung-fuer-Blinde-id18145806.html

10 http://www.wissenschaft.de/technik-kommunikation/materialforschung/-/journal_content/56/12054/3077301/Seide-als-Knochenflicker/


Schermafbeelding 2014-09-30 om 15.17.11

Glass insulation

Foamglass: from insulation material to sustainable agriculture

by Markus Haastert, Anne Kathrin Kuhlemann, Malte Plewa

Background: What is foamglass?

The construction business is an area of industry which the concept of sustainability has reached relatively late. Nowadays, however, the business of sustainable construction is booming. It is estimated that the profit generated from the green construction business will reach 245 billion US$ by 2016 in the USA alone. This is why new products which promise to make construction greener enter the market regularly. Today we look at one of these products in detail, namely foamglass.

For the production of foamglass, glass is powdered, enriched with carbon and heated up to 900 degrees Celsius, so that is starts to foam. The carbon reacts with the oxygen to carbon dioxide, which is responsible for the bubbles. After is has cooled down slowly, hard boards of foamglass are acquired. Instead of boards, one can also produce granulate by cooling down the hot material very quickly, so that it breaks into pieces.

glass00 Glass insulation Examples

The producers of foamglass promote that it can be produced to a large extent with recycled glass from landfills. Waste is transformed to value. Generally, glass is a material which can be molten over and over again to reuse it; however, this is very energy intensive.

Foamglass has several characteristics which make it an impressive insulation material. It does not absorb water, so that it cannot start to mold, and it dries up very quickly. Furthermore, it does not take up or release any compounds to the environment and does not react with chemicals; it is completely inert. Through its stability and resistance to influences from outside, the material does, in contrast to other materials, not lose its insulation capacity over time. The enclosed air particles make it a relatively well-suited insulation material. The heat resistance is impressive, the melting point lies at 650 degrees Celsius. Foamglass granulate is also resistant to very cold temperatures.

Also contaminated material, such as glass from television tubes or mercury containing bulbs can be used for foamglass production. During the melting process, heavy metals are separated from the glass and then delivered to metal processing plants1.

Despite these impressive characteristics, one has to examine the life-cycle of the product in detail to be able to make statement about its potential as a new green construction material.

c05_glass02 Glass insulation Examples

Innovation: Insulation and construction with foamglass

Glass is produced from sand, limestone dolomite and feldspar; the production process is extremely energy intensive. The parent materials are heated up to 1600 degrees Celsius and molten. As the energy demand is that high, a study from the German Environmental Agency (UBA) considered it impossible, to produce glass in a sustainable way1. For the production of one kilogram of glass, an energy input of 14 Mega-Joule (MJ) are necessary. Each percent of recycled glass used in the process, reduces the energy consumption by about 0,25 percent. This means that with a recycling-glass content of 75%, as it is the target in foamglass products, one can save 19% of the energy needed. For insulation or construction purposes, aluminum boards are needed for stabilization. The energy input required for the production of a kilogram of aluminum is more than 120 MJ2. The primary energy demand of one cubic meter of foamglass lies between 750 and 1600 Kwh. If one compares the energy used to produce foamglass with the energy needed to produce other insulation materials, such as hemp, the statistics are not really favorable. Also the insulation characteristics of foamglass are not as good as some of its alternatives. Hemp used for insulation has a twice as high heat storing capacity (2300 J/KgK) than foamglass (1110 J/KgK).

The advantage of foamglass is that something which has been considered waste is brought back into the value chain. In Germany, every year about two million ton of glass are collected3. About 85% of this is recycled4. In the USA, however, the statistics look somewhat different; only 28% of the 11,6 tons of glass waste which are produced annually, is recycled5. The demand is therefore enormous. Unfortunately, the two glassfoam producers in the US are using only virgin material in the production process6.

Many airports are being insulated with foamglass, among them the airports of Doha, Dubai, Paris and Düsseldorf.

c05_glass01 Glass insulation Examples

Potential: Sustainability and new areas of application

By now, foamglass is not only being used for insulation purposes but also as bearing material in the construction industry. Especially the in granulate form, foamglass is being increasingly used as a base material and in road construction. A study of Norwegian scientist has found out that foamglass-granulate is very well suited for road construction, as it can tolerate heavy weights, strong heat, moisture and cold. The study furthermore shows that the material can be used for the construction of airstrips7. There are already car park levels which are made from this material.

By now it is possible to replace concrete with foamglass. And this is where the actual green potential of the material lies. Instead of concrete, which is a very environmentally unfriendly product due to its high resource demand which often combined with a high quantity of steel, recycled glass can be used. Using foamglass as a material for walls, insulation becomes unnecessary which is often a major factor during construction works. For this, foamglass is combined with aluminum-frames which reduces the time needed for construction drastically. When not only concrete and steel, but also the insulation is replaced by foamglass and additionally a reduction of construction time is achieved, foamglass becomes economically interesting – which is important when is wants to compete with concrete and other materials. Sand resources are being protected and less steel is needed.

c05_glass04 Glass insulation Examples

Concrete need 3-4MG energy per Kg during its production, steel about 80 MJ. Using an 80:20 mix, the energy demand is about the same as the one of foamglass in aluminum-frames (both from recycling). The foamglass parts can however be better recycled than concrete, which can only be reused as granulate.

For the construction industry, this product has a great potential. Its sustainability however depends on a few conditions. First of all, it is essential to use old glass in the production of foamglass. The production of virgin glass is very energy intensive and unnecessary as long as not 100% of the actually produced glass is recycled. Furthermore, the heat which used in the production process should stem from waste heat from industrial processes or from landfill gas. If it is possible to reuse the heat which develops as a result of decomposing activities in the landfill in a nearby foamglass factory, transportation distances and energy production can be reduced. At least, renewable energy should be used in the production process, as done by Europe’s biggest producer, Corning Europe NV8

Also the carbon dioxide which is produced on landfills can be used in the production process, in order to reduce the emissions of greenhouse gases. Furthermore it has to be ensured that the foamglass itself reenters the recycling process, once it has been disposed.

Foamglass has the ecological advantage that it is chemically completely inactive. Chemical pollution is often a big problem with insulation materials. Materials such as XPS are often treated with fire protection additives, so that they contain a large amount of toxic components when disposed. As foamglass is fireproof itself, no additives are needed.

Also outside of the construction area, foamglass is being used. Fine grained material is used as a substrate for plants in hydroponic installations. Furthermore, cleaning and polishing devices are made from it. “Sponges” made from foamglass can be used to clean hard surfaces, such as pools, kitchen devices or grills. It is also being sold as an alternative to sand paper1. Many other application areas will most probably follow in the near future, as the speed with which foamglass has entered the market is quite amazing.

The foamglass technology can contribute to transforming millions of tons of waste into a valuable product. However, it has to be made sure, that the process takes place sustainably. As a substitute for traditional construction materials, foamglass has a great potential, as it saves resources and is more stable than alternative materials. As it does not need chemical additives, it can also contribute to a healthier way of living.



This text was scanned to ensure it contains no plagiarism using plagscan.com.

CCcopy Glass insulation Examples  This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.



Photos: SXC, Koljern, Wikipedia

Schermafbeelding 2014-09-30 om 14.52.33

No batteries

Keine Batterien

von Markus Haastert, Anne Kathrin Kuhlemann

Hintergrund: Milliarden Batterien vergiften die Müllhalden

Die Erfindung der Batterie war eine Revolution. Sie hat es möglich gemacht, Energie dorthin zu transportieren, wo und wann man sie brauchte. Mittlerweile haben die meisten elektrischen Geräte irgendeine Art von Batterie oder Akku verbaut, sodass sie auch laufen, ohne ans Netz angeschlossen zu sein.

c04_nobatteries00 No batteries Examples

Doch kurze Akkulaufzeiten und sich schnell entleerende Batterien sind ein Ärgernis, das jeder kennt. Auch umwelttechnisch sind Akkus und Batterien problematisch: für ihre Produktion werden nichterneuerbare Rohstoffe wie seltene Erden benötigt, die nicht unbegrenzt auf der Erde vorkommen. Während ihrer Produktion wird CO2 ausgestoßen, welches zur weltweiten Klimaerwärmung beiträgt. Allein in den USA werden jedes Jahr 3 Milliarden Batterien weggeworfen, in Deutschland sind es 1,5 Milliarden Batterien jährlich. Weltweit werden jährlich 15 Milliarden Batterien hergestellt und verkauf, um den ‘Abfall’ zu ersetzen. In Batterien sind oft Schwermetalle wie Cadmium, Quecksilber und Blei enthalten, diese sind hochgradig umwelt- und gesundheitsschädlich.

Batterien sind daher im momentan eines der größten Forschungsgebiete. Zum Beispiel werden für Elektroautos sehr teure Batterien benötigt, die trotzdem nur für maximal 500 Kilometer Energie speichern können. Es wird an immer kleineren Batterien mit immer größerer Speicherkapazität geforscht.

Doch die Wissenschaft geht auch noch in eine ganz andere Richtung. Wenn es möglich wäre, Energie nicht mehr zentral zu produzieren und dann zu einem bestimmten Ort transportieren zu müssen, sondern die Energie direkt dort zu produzieren, wo man sie benötigt, würden sehr viele Probleme einfach wegfallen. Leere Akkus und Batteriemüll könnten so der Vergangenheit angehören.

Innovation: Abwärme in Elektrizität verwandeln 

Um uns herum wird unfassbar viel Energie als Abwärme abgegeben und nicht genutzt. Die Frage ist nun, wie man diese Wärme einfangen und dann in nutzbare Elektrizität umwandeln kann, um Uhren, Handys oder Laptops zu betreiben – ganz ohne Batterie. Allein der Körper eines Mannes produziert jeden Tag zwischen 100 und 120 Watt. Das wäre genug, um die portablen elektronischen Geräte, die man im Alltag verwendet, mit Energie zu versorgen.

c04_nobatteries01 No batteries Examples

Die Forschung in diesem Bereich schreitet sehr schnell voran. Thermoelektrische Generatoren sind im Moment die Technologie, die am vielversprechendsten aussieht. Dabei handelt es sich um kleine flexible Scheibchen, die die Wärmeunterschiede zwischen der menschlichen Haut und der Außentemperatur in Elektrizität umwandeln. In die andere Richtung funktioniert diese Technologie schon sehr gut und wird zum Beispiel zur PC-Kühlung verwendet. Elektrizität wird zugefügt, und dadurch werden die Wärmeunterschiede auf den beiden Seiten des Scheibchens größer. Nun muss dieses Prinzip nur umgedreht werden, so dass aus den Wärmeunterschieden Strom erzeugt werden kann. Vor kurzem haben koreanische Wissenschaftler vom Korean Advanced Institute of Science and Technology ein Armband entwickelt, das zehn mal mehr Elektrizität produziert als ähnliche Geräte, da es auf ultraleichtem und sehr flexiblem Glasfasermaterial gedruckt wurde. Es wird solange Energie produziert, wie die Lufttemperatur niedriger ist, als die Körpertemperatur des Trägers. Dieses Gerät wurde für medizinische Zwecke kreiert, wie zum Beispiel als Energiequelle für Herzsensoren. Aber theoretisch kann es auch Handys oder sogar Laptops betreiben. Der Markt für so eine portable Ladestation wäre gigantisch.

Schon im Jahr 1998 brachte die japanisch Firma Seiko die erste Uhr heraus, die durch die Transformation von menschlicher Wärme zu Elektrizität funktioniert. Allerdings wurden davon nur 500 Stück produziert. Der hohe Verkaufspreis von über 2000 Euro führte zu einer sehr zurückhaltenden Nachfrage. Es gibt natürlich auch Uhren, die die kinetische Energie ernten, die entsteht, wenn sich der Arm des Trägers bewegt. So benötigen sie keine Batterie und müssen nicht aufgezogen werden.

Potenzial: Batterielose Herzschrittmacher?

Eine ganz ähnliche Technologie könnte abseits von der Energieversorgung für Telefone und Computer auch in der Medizin Verwendung finden. Vor kurzem hat ein Wissenschaftler aus der Schweiz einen Herzschrittmacher gebaut, der ähnlich funktioniert  wie ein Uhrwerk – aber ohne eine Batterie. Die nötige Energie, die zum Betreiben des Herzschrittmachers benötigt wird kommt direkt aus dem Herzen – durch seine regelmäßigen Schläge. Diese kinetische Energie kann aufgefangen und geerntet werden und genügt, um das Gerät zu betreiben. Erste erfolgreiche Versuche an Schweinen haben bewiesen, dass die Technologie durchaus realistisch in der Umsetzung ist.

c04_nobatteries03 No batteries Examples

Ein batterieloser Schrittmacher würde den Patienten zahlreiche Operationen ersparen, die nötig sind, um die Batterie des Schrittmachers zu wechseln.  Da solche Operationen immer ein Risiko sind, könnten dadurch Leben gerettet werden und natürlich auch Kosten gespart werden. Über 75.000 Herzschrittmacher werden allein in Deutschland jedes Jahr implantiert. Nach einigen Jahren muss bei jedem dieser Geräte die Batterie gewechselt werden. Durch Herzschrittmacher ohne Batterie könnten also zahlreiche Operationen vermieden werden. Gerade für ältere Menschen stellt jede Operation ein großes Risiko dar. Und jungen Menschen mit Schrittmacher könnten zahlreiche Operationen im Verlauf ihres Lebens erspart bleiben.

Wenn es heute schon möglich ist aus Körperwärme genug Energie zu produzieren um ein Smartphone aufzuladen, dann tun sich ganz neue Potentiale für diese Technik auf. Um uns herum wird sehr viel Energie einfach als Abwärme in die Umwelt gepumpt. In Fabriken, Elektrizitätswerken, Müllhalden oder Transportmitteln wie Auto oder Flugzeugen werden jeden Tag riesige Mengen an Wärme verschwendet, die man zu Elektrizität konvertieren könnte, die dann direkt vor Ort verwendet, oder ins Stromnetz eingespeist werden könnte. Für neue Innovationen ist also noch viel Raum.

c04_nobatteries04 No batteries Examples


This text was scanned to ensure it contains no plagiarism using plagscan.com.

CCcopy No batteries Examples  This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.



Schaeffer, John (2015): The Real Goods Solar Living Sourcebook, 14. Aufl., New Society Publishers, Gabriola Island





Schermafbeelding 2014-09-30 om 14.27.18

Proteins from organic waste

Proteins from Organic Waste

by Markus Haastert and Anne Kathrin Kuhlemann


Background: Feeding 10 billion people 

The current research into human population has come up with some disturbing results. As it stands, by the year 2050 the world’s current population of 6.9 billion people could very well rise to staggering 9.6 billion. Taking into consideration that livestock farming currently takes up about 30% of land that is not completely covered in ice and that it is responsible for 18% of today’s global warming effect, it is not at all reassuring to know that if we follow the data, the livestock production will undoubtedly double by the year 2050 if we do not make some drastic changes in our eating habits.
The most notable reason for the increase in cattle farming is the nutritional value it has to human lifestyle, mainly the amount of protein it provides to us. The amount of protein we currently consume daily per person is 75.3 grams on average worldwide, 24.3 grams of which is pure animal protein. If we look at this situation from the biological point of view, it is not necessary for a human being to have the plant protein circulated trough animals before it is ingested. Plants like soybeans include all the necessary amino-acids for a human to function healthily. And to top it all off, the amount of water that is required to get 1kg of grain-fed beef is 100,000 liters; compared to that, soybeans ‘only’ require 2,000 liters per 1kg.

c03_coffee01 Proteins from organic waste Examples

With the arrival of modern technologies, many alternatives to meat were found for our protein fueled diets. One of the most notable substitutes is Mycoprotein, which is the protein contained in mushrooms. Mushrooms have been known to contain much larger amounts of protein compared to plants, up to 23 grams of protein per 100 grams of mushrooms. And these are all ‘complete proteins’ meaning they contain all the amino-acids that the human body needs to operate normally.
Lately a new way of cultivating mushrooms has appeared. As it stands, the dried up shells and pulp from coffee has proven to be an exceptional base for growing mushrooms as it increases their growth speed almost threefold. The other important benefit is that the artificial logs made this way are caffeine rich.  The latest research has shown the caffeine from coffee beans to be a natural insecticide, reducing the growth of mushroom related pests by approximately 50%, and that dried tea leaves which contain up to three times more caffeine provide two to three times better effect.

Innovation(s): from food to packaging to soil remediation

This form of mushroom cultivation was practiced in developing countries for many years, but pioneered in the Western world by two Berkley University students in 2009. Nikhil Arora and Alejandro Velez were the first to create a brand out of coffee-grown mushrooms and with it they have started a small revolution in both the mushroom growing industry as well as waste disposal management. Following their lead, roughly a dozen companies have entered the market in Europe since 2010. Chido’s mushrooms in Germany and GRO-Holland in the Netherlands have established themselves with two different business models: GRO processes the coffee grounds from a single chain of coffee shops and then returns most of the fresh mushrooms produced on these to be sold in that same chain – thus reducing two of the major cost drivers in decentral mushroom production: logistics and sales. Chido’s mushrooms on the other hand focuses on producing a home growing kit from coffee waste, allowing customers to grow their product fresh right inside their own home

c03_coffee02 Proteins from organic waste Examples

Since then, many more companies have emerged: Fungi Futures, a company based in Devon, created the GroCycle Urban Mushroom Farm in an abandoned building right in the heart of the city. This helps provide the city’s restaurants with fresh product as well as spread the word about this new, environmentally friendly technique. Fungi Futures also offers a Kit for home production of mushrooms. British Espresso Mushroom Company also produce kits for home production, similar to RecoFunghi and Funghi Espresso from Italy, EK-Miro in Poland, RotterZwam from the Netherlands, Prêt à pousser and Boîte à Champignons from France, Perma Fungi in Belgium, Gumelo in Portugal or resetea and Seta’s pocket gourmet based in Spain – and others yet to come. In the past four years, almost every country in Europe has received a representative in the coffee-grown mushroom market, many of them receiving awards for their ecological business endeavours.
The best part is that the nutritional value of mushrooms is only a tiny part of what they can be used for. In 2007 a company named Ecovative presented an alternative to plastic made (grown) entirely from the mycelium of fungi. If production can become cheaper, this material might very well replace plastic and Styrofoam in the future, since it offers all of their benefits without the catastrophic impact on the environment.
Furthermore, fungi are one of nature’s most efficient ways to cleanse the soil. For this reason scientists like Mohamed Hijri of the University of Montreal’s Institut de Recherche en Biologie Végétale (IRBV) have been using fungi to purify the soil contaminated by heavy-metals, which would take thousands of years to become habitable again if left on its own.

Since then, many more companies have emerged: Fungi Futures, a company based in Devon, created the GroCycle Urban Mushroom Farm in an abandoned building right in the heart of the city. This helps provide the city’s restaurants with fresh product as well as spread the word about this new, environmentally friendly technique. Fungi Futures also offers a Kit for home production of mushrooms. British Espresso Mushroom Company also produce kits for home production, similar to RecoFunghi and Funghi Espresso from Italy, EK-Miro in Poland, RotterZwam from the Netherlands, Prêt à pousser and Boîte à Champignons from France, Perma Fungi in Belgium, Gumelo in Portugal or resetea and Seta’s pocket gourmet based in Spain – and others yet to come. In the past four years, almost every country in Europe has received a representative in the coffee-grown mushroom market, many of them receiving awards for their ecological business endeavours.
The best part is that the nutritional value of mushrooms is only a tiny part of what they can be used for. In 2007 a company named Ecovative presented an alternative to plastic made (grown) entirely from the mycelium of fungi. If production can become cheaper, this material might very well replace plastic and Styrofoam in the future, since it offers all of their benefits without the catastrophic impact on the environment.
Furthermore, fungi are one of nature’s most efficient ways to cleanse the soil. For this reason scientists like Mohamed Hijri of the University of Montreal’s Institut de Recherche en Biologie Végétale (IRBV) have been using fungi to purify the soil contaminated by heavy-metals, which would take thousands of years to become habitable again if left on its own.

Potential: fuel, cancer cure – and food security for all

In the future humanity should look to prevent the pollution caused by oil industry rather than trying to fix the damage after it was caused. For this reason people like Adrian Tsang, Professor of Biology at Concordia University, are looking for alternative ways to create biofuel. Since corn is mainly used for producing biofuel, many people find it controversial considering the food crisis plaguing some parts of the world. Prof. Tsang’s research is looking to replicate the chemicals used by fungi for decomposing plant material, allowing him to create biofuel from potentially wasted biological material, and reducing the disruption of the natural CO2 cycle.


c03_coffee03 Proteins from organic waste Examples

The pharmaceutical industry has started taking interest in the benefits that mushrooms offer. It was discovered that fungi hold a strong antiviral potential. Since viruses can not be treated like bacteria wit antibiotics, many strains of mushrooms have shown a very useful ability to slow down viral enzymes and absorption of viruses into the cells of mammals. And with researchers like Paul Stamets, one of the most notable names in Mycology circles, constantly discovering new species and new information on the fungus genome, like for example the use of mushrooms for HIV and cancer treatment, the possibilities just keep piling up.

Many different industries have started taking interest in the possible uses of mushrooms. Everyone from pharmaceutical companies to waste disposal experts is finding the use of mushrooms in their fields. Construction companies can look forward to the development of the new fungal-based materials that may very well replace everything from plastic to materials used for house insulation. And environmentalists can hope to see the methods for reducing oil-company damage to the environment and maybe even completely preventing it, in the near future.

With all this being said, the most basic needs should come first. If mushroom cultivation is brought to peasants and smallholders around the world, a steady supply of mushrooms would become possible. This would first and foremost increase food security, since even crop failures can be used as substrate to grow healthy, protein rich food. A vision several NGOs have begun turning into reality.

c03_coffee04 Proteins from organic waste Examples


This text was scanned to ensure it contains no plagiarism using plagscan.com.

CCcopy Proteins from organic waste Examples  This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


  1. http://www.news.cornell.edu/stories/1997/08/us-could-feed-800-million-people-grain-livestock-eat

  2. http://www.new-harvest.org/wp-content/uploads/2013/04/AAB-food-security-conf_Tuomisto-2010.doc-Compatibility-Mode.pdf

  3. http://www.powerofmushrooms.com.au/health-nutrition/health-nutrition/protein-carbohydrates/

  4. http://wholefoodcatalog.info/nutrient/protein/mushrooms/

  5. http://web.as.uky.edu/Biology/faculty/cooper/NSTA-2012-workshops/HeartRate%20NSTA%20Workshop/caffiene%20in%20Manduca.pdf

  6. http://grocycle.com/about-us/

  7. https://www.backtotheroots.com/about-us

  8. http://www.telegraph.co.uk/foodanddrink/10333559/Word-of-mouth-The-Espresso-Mushroom-Company.html

  9. http://www.fastcoexist.com/1679569/petroleum-eating-mushrooms-to-decontaminate-our-most-polluted-sites

  10. http://www.genomequebec.com/18-en/environment-capsule-fossil-fuel-shortage-do-mushrooms-hold-the-key-.html

  11. http://cleantechnica.com/2008/10/09/mushroom-enzyme-could-make-clean-fuel-cells/

  12. http://gizmodo.com/the-futuristic-material-that-will-replace-plastic-is-511544462

  13. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1193547/

  14. http://www.fungi.com/about-paul-stamets.html

  15. http://www.recofunghi.com/

  16. http://www.gro-holland.com/

  17. http://www.rotterzwam.nl/

  18. http://www.chidos.org

  19. http://www.boczniaki.intarnow.pl/?page_id=228

  20. http://www.setaspocket.com/

  21. http://resetea.es/

  22. http://www.greenandgourmet.com/

  23. http://www.gumelo.com/

  24. http://www.permafungi.be/index.php?lang=en

  25. https://pretapousser.fr/

  26. http://www.laboiteachampignons.com/

  27. http://www.funghiespresso.com/

  28. http://espressomushroom.co.uk/

  29. http://grocycle.com/urban-mushroom-farm/